Nanomedicine Approaches for Corneal Diseases
نویسندگان
چکیده
Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management.
منابع مشابه
P184: Combination of Herbal Medicine and Nanomedicine: a Novel Therapeutic Target for Neurodegenerative Diseases
Inflammation is a pathologic condition that includes a wide range of diseases namely neurodegenerative diseases. Several natural anti-inflammatory components have been identified in plant extracts used in traditional medicine for the relief of inflammation. Herbal medicine is showing difficulty in crossing the blood-brain barrier (BBB). So that the ability to pass the BBB is the main concern fo...
متن کاملPreparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization
Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine-glycine-aspartic acid (RGD) peptide-...
متن کاملNew biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders.
This review discusses the multiple bio- and nanotechnological strategies developed in the last few decades for treatment of a group of fatal genetic diseases termed lysosomal storage disorders. Some basic foundation on the biomedical causes and social and clinical relevance of these diseases is provided. Several treatment modalities, from those currently available to novel therapeutic approache...
متن کاملNanotechnology in corneal neovascularization therapy--a review.
Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1-100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels. The term "nanotechnology" was first coined in 1974. Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology ...
متن کاملWound-healing effect of micronized sacchachitin (mSC) nanogel on corneal epithelium
The extraction residue of the Ganoderma fruiting body, named sacchachitin, has been demonstrated to have the potential to enhance cutaneous wound healing by inducing cell proliferation. In this study, a nanogel formed from micronized sacchachitin (mSC) was investigated for the potential treatment of superficial chemical corneal burns. Reportedly, mSC has been produced successfully and its chemi...
متن کامل